
Beyond the Prototype: The Design Evolution of a Deployed AI System

Cheryl Martin and Debra Schreckenghost

NASA Johnson Space Center, TRACLabs
1012 Hercules, Houston TX, 77058, USA

cmartin@traclabs.com, ghost@ieee.org

Abstract
This paper describes the evolution, from prototype to
deployment, of the software engineering approach for a
personal assistant agent-based system. This discussion is
presented as a case study, relating experiences and lessons
learned from our work with the Distributed Collaboration
and Interaction (DCI) environment. Our development of
this system is based on the spiral software engineering
methodology, which incorporates iterative cycles of
improved design, implementation, and evaluation. We first
describe the techniques we used to bootstrap the
implementation of this large, distributed AI system, and
then we describe how we accommodated more advanced
requirements as the system matured.

Introduction

During our previous experiences with deployed intelligent
control agents for NASA advanced life support systems
(Schreckenghost et al., 2002), we discovered many
unaddressed needs for human interaction with control
agents. These control agents operate continuously over
months to years to monitor and perform process control for
regenerative life support systems, which recover usable
water or air from the waste products created by biological
systems over time. To address these interaction needs, we
developed the Distributed Collaboration and Interaction
(DCI) system, which helps humans and autonomous control
systems in a variety of ways to work together. This paper
describes the software engineering aspects of our
experiences, first, in designing and developing a prototype
of the DCI system, and later, in adjusting the
implementation to make the leap from initial prototype to a
system ready to be applied under varying circumstances to
meet different needs. The details in the paper focus
primarily on the second stage of development.
Overall, we have implemented demonstrations of DCI in
two domains and deployed the system in one of those
domains. Specifically, we have demonstrated an
application to support ground test engineers in monitoring
life support systems and control agents as well as an
application of DCI to support astronauts and ground
personnel in mission support roles. The DCI system is
currently deployed in the first domain, operating 24/7, to

Copyright © 2004, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

assist engineers interacting with an advanced Water
Recovery System (WRS). A related paper from these
proceedings (Schreckenghost et al., 2004) discusses other
lessons learned during the deployment as well as user
feedback and the management of the deployed DCI system.

DCI Overview

Figure 1 depicts representative elements of a DCI system.
The entities with black backgrounds (the human, the WRS
life support system and its control agent, and the multi-
agent planner) participate in, but are not part of, the DCI
environment. Our planner is a hierarchical task net (HTN)
planner known as AP that is capable of automatically
monitoring and updating its plans (Elsaesser and Sanborn,
1990). The Conversion Assistant for Planning (CAP) is
software that augments an automated planner’s ability to
interface with human agents (e.g., when an organization
uses planning to coordinate anomaly response activities
between software and human agents). The Event Detection
Assistant (EDA) monitors data produced by the life support
system or its control agent and searches for patterns in this
data that are of interest to the humans for such activities as
anomaly analysis and failure impact assessment. The DCI
approach uses intermediate liaison agents, one associated
with each human, to mediate between that human and the

planner
(AP) WRS Life

Support
System

WRS control
agent

WRS Life
Support
System

WRS control
agent

Human

Conversion Assistant for Planning
(CAP)

GUI Situation Viewer

Event
Detection
Assistant

(EDA)

Command/
Authorize

(CAS)

Interrupt
Handle

(IHS)

Task
Status
(TSS)

Interactive
Procedure

(IPS)

Interactive
Event
(IES)

Notification
(NS)

Location
(LS)

User
Interface

(UIS)

State
Management

(SMS)

ARIEL

Figure 1. DCI System Architecture and Connectivity.

rest of a multi-agent system. A liaison agent is a type of
personal assistant agent for its user. The liaison agents in
DCI are called Attentive Remote Interaction and Execution
Liaison (ARIEL) agents. Each agent offers a set of
services, as shown in Figure 1. Full descriptions for the
system and each of these services are given in (Martin et
al., 2003). This paper refers to a subset of these services:

• State Management Service (SMS): The SMS stores
beliefs held by ARIEL and takes input from other services
to create a coherent state model of the user. This model
may include current activity, location, role, schedule, etc.
• Notification Service (NS): The NS uses pattern-matching
and specifications defined by a user or an organization to
determine if an incoming notice or event is of interest to the
user and, if so, how to inform her based on where she is
and what she may be doing.
• Location Service (LS): Tracks the user’s location.
• Task Status Service (TSS): Tracks the user’s current
activity and its status (acknowledged, initiated, etc.).
• User Interface Service (UIS): Handles all Ariel
communication with the user.
• Command and Authorization Service (CAS): The CAS
supports the user in remotely issuing directives to physical
systems that are otherwise controlled by mostly
autonomous agents (e.g., the physical hardware underlying
life support systems).

Initial DCI Prototype

As the first step in designing the DCI system and the Ariel
agents, we identified what services the agents needed to
provide as well as support software we needed for our
application. That part of the design process is documented
in (Schreckenghost et al., 2002), and the resulting system
composition is shown in Figure 1. We faced several
challenges in implementing a prototype for this design:

• Distributed computing. The DCI system is naturally
distributed because it is required to support users who
may be located remotely from the autonomous control
system with which they are interacting. User GUIs are
located remotely and location tracking and task tracking
must also take place remotely.

• Size. The DCI system is large, with approximately 140
distributed server and client objects in the deployed
system including Ariel service modules, DCI user GUIs,
system access managers, etc.

• Multiple platforms and programming languages. In
order to interface with existing software tools (i.e., a
planner written in Lisp) and to take advantage of other
language-specific capabilities (i.e., Java’s cross-platform
GUI support), we needed to support multiple
programming languages. Also, based on the available
resources at various locations, we needed to be able to
execute on multiple platforms simultaneously.

• Multiple developers. A team of five software developers
collaborated to implement the DCI prototype. Most of

these developers were also working on other tasks, which
meant they were not always available to immediately
address problems in the developing software.

Balanced against these challenges, the design has the
advantage of being very modular. Strong dependencies do
exist among the components, for example, the Notification
Service needs the Location Service to be able to tell where
a user is, and whether he or she has online access, in order
to determine the best means of notifying for that location.
However, due to the modular design, these dependencies
could be managed easily in most cases by succinct interface
definitions for communication among the components. We
reviewed the available technologies for implementing this
modular design under these circumstances and determined
that CORBA standards and tools (www.omg.org) met all
requirements and offered the best technical advantages.
CORBA supports a much wider variety of languages and
platforms than other distributed computing technologies, it
provides a great deal of transparent middleware and tool
support for developers, and its specification is formal, well-
documented, and well-architected. We chose not to use
Java RMI for our cross-platform implementation because
we needed to support Lisp and C++ programming
languages. We chose not to use DCOM due to its limited
or non-existent support for the platforms and programming
languages we needed to use (particularly Lisp and Java
under Linux).
At this point, we undertook the software engineering task
of defining the interfaces among the components using
CORBA Interface Definition Language (IDL). Some of
these interface definitions were straightforward and served
to get information from one service to another. For
example, once the LS determines a current location for the
user (originally modeled as a NASA crew member), it posts
this information to the SMS:

void postLocation(in DCI::CrewLocation loc);

Using this approach and the CORBA tools for
development, we reaped the classic advantages of the
object-oriented methodology by encapsulating each service
in a well-defined interface. This approach allowed
individual developers to concentrate on their own internal
AI algorithms such as pattern matching (in the NS) and
belief revision (in the SMS, TSS, and LS), and it reduced
dependencies on other components developed by other
programmers. Although this approach is not uniquely
useful for AI applications, it is especially important for
integrating multiple AI technologies into a large deployed
system. In essence, encapsulating the complexity of the AI
algorithms themselves reduces the complexity of
integration, which could otherwise become unmanageable.
Further, this approach supports future upgrades to the AI
technologies included in the Ariel services without
requiring changes in the integration. Again, this benefit
does not uniquely apply to AI technology, but it is
particularly important because the AI algorithms are active
areas of development and thus prone to change.

An interesting and extremely productive dynamic arose
during integration testing. Because our CORBA-based
approach supported full distribution, developers could
debug remotely from one another on the same running
system. Each developer could sit at his/her own computer,
(often in different buildings, in the development
environment of his or her choice) to run the integration
tests and watch his/her piece of software running, make bug
fixes locally, and run again. This was extremely efficient
because it allowed each developer to simultaneously debug
in his/her own development environment while seeing how
his/her module performed in integration with other
modules. This was particularly important for bootstrapping
the system integration because many of the developers had
never previously used CORBA, and there were many initial
connectivity errors as they learned the technology.
The process of defining and implementing the static
communication of information among the services, as just
described above, was far more straightforward than the task
of dynamically coordinating Ariel services. Since all the
services can potentially run as separate processes, an Ariel
agent would need to find each of its running services on
startup and “introduce” them to one another (by giving
object references for each service to the other services for
the same agent). We also needed to manage several startup
and shutdown dependencies as well as the services’
connections to components outside the Ariel agent. To do
so, we developed the IDL interface below, which each of
the Ariel services implemented. The core Ariel process
would find (via the CORBA Name Service) an object
reference for each of the services then use these functions
to pass those object references to the other services.

interface Admin {
void connectSMS(in SMS::InternalAgentSMS ref);
void connectUIS(in UIS::InternalAgentUIS ref);
void connectTSS(in TSS::InternalAgentTSS ref);
void connectLS(in LS::InternalAgentLS ref);
void connectNS(in NS::InternalAgentNS ref);
void disconnectSMS();
void disconnectUIS();
void disconnectTSS();
void disconnectLS();
void disconnectNS();

void init (in DCI::CrewState initial_state,
in string xml_init_string);

void resetExternalConnections();
oneway void shutdown();

};

Only some of the services (e.g., not including the CAS) that
we defined for Ariel were contained in the original
prototype, and this set is rigidly encoded in the service
interface. This rigid interface worked well for the initial
prototype for several reasons. First, most of the software
development team was just learning CORBA, so the
simplicity of the strongly-typed interface made it a more
reasonable initial step than something with more levels of
indirection requiring run-time casting of object types.
Second, it gave us the chance to explore how the DCI
application might work (which was previously uncharted

territory) without spending too much time on designing
plug-and-play connectivity. This allowed us to move
quickly to a point where we could test our services together
as a whole, and allowed us to make progress on the
individual services sooner than if we had spent more time
on perfecting the connectivity. In doing so, we also learned
or confirmed what kind of improvements we needed in the
connectivity design for future generations of the
implementation.

Beyond the Prototype - Desires

As soon as we demonstrated the initial prototype in the life
support domain, we began to want more out of the system
than the initial design supported. These desires were
driven by several factors:

• Applications. The Ariel prototype used a fixed set of
services for a particular application supporting NASA
astronauts interacting in specific ways with an autonomous
control agent for life support. However, we wanted to be
able to add the Command and Authorization Service
(CAS), which we had not been able to include in the
prototype. This would have required rewriting the Admin
interface above to include the CAS and changing the
implementation of every existing service to accommodate
this interface change. In addition, we were asked to apply
the Ariel agent in a demonstration to provide notification
for ground personnel supporting space station operations.
This required removing the CAS and the Task Status
Service from the agent. Accommodating this reduced set
of services would have also required rewriting the interface
(in a different way) and tracking this change in the
implementations of all the services.
• Testbed. Customizing the service sets is a recurring
need for the DCI system. In addition to providing a useful
monitoring and control capability as implemented, the DCI
environment could also provide a testbed for evaluating
new or alternate services from external sources such as
universities and research institutes. This would potentially
require disabling existing services as well as integrating
with new services.
• Robustness. The DCI prototype was used for several
one-shot demonstrations, but the mature system needed to
support continuous 24/7 operation over months.
Robustness and graceful degradation in the face of software
failures are critical. If an error occurs in one service, the
others should be able to carry on without failing until the
broken service is replaced. A failure in one service should
not cause the entire system to need to be restarted.
• Efficiency. Running each Ariel service in a separate
process was an excellent strategy, initially, to support
distributed development and debugging. However, once
the focus shifted to operations rather than building the
system, we needed to make the system more lightweight.
• Convenience. The coordinated startup and shutdown
of ~40 machine processes in the initial prototype was
tedious and error prone. We wanted to streamline the

startup of these processes and coordinate the creation of
client and server objects in the software where possible.
We also wanted to add the ability to recover from user
errors in startup order, should they occur.

Beyond the Prototype - Requirements

Based on these desires, we developed a set of requirements
for the next generation of the DCI system. These
requirements are listed here in order of importance:

1. Make the set of ARIEL services be non-rigid and able to
be specified at startup/run-time. Eliminate compile time
dependencies among services completely. Eliminate
run-time dependencies or include exception handling for
“graceful degradation” if other services are not present at
run-time. Because different services are responsible for
maintaining different (possibly new) parts of the user’s
state, eliminate the rigid, monolithic “CrewState” data
structure, which we had used to hold the entire model of
the user’s state (originally a NASA crew member). (The
user’s state may include his or her current activity,
location, health, role, etc.) Instead, allow different
services to post and read the relevant parts of the agent’s
beliefs from the SMS, as needed.

2. Make the running ARIEL service set be dynamically re-
configurable for robustness at run-time and for easier
maintenance and debug. Allow individual services to be
disconnected, shutdown, restarted, reinitialized, and
reconnected without shutting down the agent or the other
services.

3. Streamline start-up and management of the ARIEL agent
and services. Where possible, implement the ability to
spawn all services from a single initial thread.

4. Make ARIEL agents (along with other DCI components)
more lightweight by providing capabilities to combine
services in same JVM/Lisp machine processes.

Beyond the Prototype - Design

To meet the first requirement and make the set of services
Ariel supports completely extensible, we needed to
redesign the definition of a basic Ariel service to eliminate
references to specific service types. We followed a plug-
and-play paradigm, and used a backbone, called the Ariel
Service Manager, that allowed any number of services (0 to
many) to be connected. In the new design, each service
connected to the others using an untyped object reference
and a name. (See IDL definition below.) If one service
recognizes the name of another service being connected, it
can attempt to resolve the provided object reference and
initiate type-specific interactions with that service. Run-
time checks for the existence of a service must be in place
before one service can call another. We used an XML
configuration file to specify the number of services and
their types for each Ariel at startup, and we added more
structure to the startup process than had previously existed

(so that, for example, each service would know when it had
received all of the other service references that were going
to be available for this instance of the agent). We
reimplemented belief access through the SMS as a
blackboard where each service could post and read the
beliefs it was concerned about without (1) being burdened
by state information it did not need in the previous rigid
user state data structure and (2) without having to track
implementation changes every time a new type of state
information was added to the state data structure. Finally,
each service was responsible for operating in degraded
mode if state information it normally relied upon was not
available in this instance of the agent (i.e., if the service
acting as the source of that state information failed or was
not included in the configuration for this particular agent
instance). For example, the Task Status Service can
normally use location information to help determine which
task a person is currently performing. However, if location
state information is not available in this instance of the
agent (perhaps the Location Service is not used because
location-tracking technology is not installed where the
agent will be deployed), then the Task Status Service
should be able to make an estimate of the user’s current
task without the location information and without crashing
because the location information is not available.
As a complement to the capability of being able to
configure an Ariel agent for any number of services, the
design to address the second requirement allowed us to
dynamically start, stop, initialize, and connect services as
the agent was running. To meet this requirement, we
needed to support asynchronous interaction among the
services during normal operation of the agent, but also
bring the services into synchronized startup and shutdown
sequences to allow dynamic service replacement,
shutdown, or startup.

enum ServiceState { STARTING, RECEIVING_SERVICE_-
REFS, CONNECTING_SERVICES, READY_TO_RUN_OR_-
RECONFIG, RETRACTING_SERVICE_REFS,
DISCONNECTING_SERVICES, STOPPING, RUNNING };

interface Admin-

{
void enterState(in ServiceState state_id);
oneway void activateCurrentState(

in AdminStateCallback ref);
void stopCurrentState();

void setUniqueId(in string service_id);
void init (in string xml_init_string);
void connectService(in string service_name,

in Object ref);
void disconnectService(in string service_name);
void resetExternalConnections();
oneway void kill();

};

Extending previous work on coordinating multiple agent
submodules using state machines (McKay, 1999), we
defined a simple state machine for startup and shutdown
sequences as well as a RUNNING state in which

-
Note: All IDL definitions have been edited for brevity.

asynchronous interactions among the services were allowed
(see Figure 2). The IDL definition, above, enumerates
each of the possible states. In the new design, this Admin
interface replaces the previously presented IDL definition
of the Admin interface and is implemented by each service.
Three of the functions in this interface move a service
through the states. These transitions are synchronized
among all the services by the Ariel Service Manager
backbone of the Ariel agent. Figure 2 describes which of
the other functions are called in each state. When it is time
to shutdown a service, all services move from the
RUNNING state through the cycle of service connections
(only those services being shutdown must be disconnected).
A service being shutdown exits the cycle at the STOPPING
state. It can be replaced by a new service in the
STARTING state, which then joins the existing services to
complete the cycle back to the RUNNING state. This
cycle can be repeated as often as needed.
To address the last two requirements, we implemented the
ability for the Ariel agent to spawn services in addition to
looking them up on the CORBA Name Service (which
requires them to be started up independently before the
Ariel agent goes to find them). For Java components, we
are able to spawn services using direct object instantiation
inside the same process running the Ariel backbone. We
are also able to spawn objects remotely using object
factories. A factory is a design pattern for instantiating
objects on request. In this case, a software process contacts
a factory running on a remote machine, asks it to instantiate
an object of a particular type on that machine, and the
factory returns a reference to that object once it has been
instantiated.

Related Work

We are not aware of any previous descriptions of the
software engineering approach for the design and
development of a deployed personal-assistant agent system.
However, in this section, we discuss several projects that
are related to this work along one or more dimensions.

First, the Electric Elves project provides user proxy
agents, called “Friday” agents, to every person in an
organization (deployed for the research organization
developing the Electric Elves project). These Friday
agents use AI-based technology to perform the following
organizational tasks (Chalupsky et al., 2001; Scerri et al.,
2001): (1) monitoring the location of each user and
keeping other users in the organization informed, (2)
rescheduling meetings if one or more users is absent or
unable to arrive in time, (3) selecting a member of the
organization to give a research presentation at each
research meeting, (4) ordering lunch for meetings or
individuals, (5) selecting teams of researchers for giving a
demonstration out of town and planning their travel, and
(6) arranging meetings with visitors based on research
interests. The Elves project was a multi-language multi-
platform implementation (Chalupsky et al., 2001). For the
implementation and deployment of this project, these
researchers would have faced many of the same software
engineering challenges described in this paper. However,
we are not aware of any publications directly describing
their software engineering approach at this level. For
integration of AI-technologies across agents, they used an
agent communication language (KQML) implementation
based on the CoABS Grid* communication infrastructure
(Chalupsky et al., 2001).

There are multiple publications available describing the
software engineering approach for the Sensible Agent
Testbed infrastructure (Barber et al., 2000; Barber et al.,
2001). Although this is an experimental testbed, rather
than a deployed system, and has no relationship to
personal-assistant agents, the issues related to the
underlying agent architecture are similar to our system.
Both agent architectures have submodules/services, and we
were able to build on the state machine approach in the
Sensible Agent architecture (McKay, 1999).

Another highly successful example of a documented
agent infrastructure supporting dynamic reconfiguration is
RETSINA. RETSINA is an implemented multi-agent
system infrastructure that has been developed for several
years at CMU and applied in many domains ranging from
financial portfolio management to logistic planning (Sycara
et al., 2002). RETSINA allows multiple agents to come
and go in an open system using dynamic matchmaking to
allow agents to find other agents with capabilities they
need. However, the primary work focuses on
communication and interaction among the agents as peers

* http://coabs.globalinfotek.com/public/Grid/What_is_Grid.htm

RECEIVING_SERVICE_REFS
receive object references

for other ARIEL
services in this agent

STARTING
find/spawn

set unique ID
set init info

establish ext conn

DISCONNECTING_SERVICES
clean-up disconnected

service connections

RETRACTING_SERVICE_REFS
receive disconnect

orders
CONNECTING_SERVICES

make peer-to-peer
calls for establishing
service conections

READY_TO_RUN_
OR_RECONFIG

RUNNING
start / run

config
safe

operation

start
hereSTOPPING

disconnect
external conn

actual shutdown

Figure 2. Dynamic Reconfiguration States

in a multi-agent system. In contrast, the design focus for
the Ariel agents in DCI is the flexible structure of the
agents themselves, which can be configured for a given
deployment with the specific set of services needed for a
given user in that case.

Conclusions

DCI supports human interaction with complex, mostly-
autonomous software control agents. This paper describes
the software engineering process of integrating several AI-
based services into an agent implementation that provides
this support. In particular, we have described requirements
and design changes needed to achieve a workable prototype
with a reasonable amount of effort and then move the
system from a prototype to a system ready to be applied to
multiple types of real world problems.
The following list summarizes our lessons learned for
making such a system extensible, robust, and easy to use:

• Encapsulate the complexity of AI-based services behind
well-defined, data-based communication interfaces to
reduce integration complexity and provide an upgrade
path that does not require implementation changes
outside the service.

• Use run-time typing for object references to isolate
implementation changes needed when adding new
modules or services. Only those components whose
internal operation is affected should need to be changed.

• Avoid compile-time dependencies among services, and
be diligent about error checking and handling for any
run-time dependencies that might exist, including data
dependencies. Each service should be able to function
(at least to avoid crashing) on its own.

• Isolate each service from run-time failures in other
services. Include run-time error checking. Allow
healthy services to continue running while a failed
service is shutdown and replaced.

• Implement data transfers as push/pull on demand actions
with run-time data typing to support extensibility.

• Streamline startup and shutdown processes to avoid user
error and frustration.

These lessons can be summarized as “how to make plug-
and-play AI-based services work robustly in a large-scale
distributed system providing customized user support.”
Examined after the fact, these lessons are not surprising,
and most trace back to the general object-oriented
principles of encapsulation and polymorphism as well as
the well-recognized need for run-time exception handling.
Although we started with those general principles always in
mind, we could not predict, at the beginning, how, where,
and when to apply these principles. For example, we found
that our bootstrapping period of compile-time typing for
the prototype was extremely useful in providing early
integration opportunities, refining our design, and making
initial progress on the individual AI algorithms running as a
part of the whole system. Therefore, this paper provides
not only a case study about how to apply general software

engineering principles to customizable AI-based services; it
also provides an example of a successful roadmap for
putting these principles and lessons learned into practice.

References

Barber, K. S., Lam, D. N., Martin, C. E., and McKay, R. M.
2000. Sensible Agent Testbed Infrastructure for
Experimentation. In Proceedings of Workshop on
Infrastructure for Scalable Multi-agent Systems at The Fourth
International Conference on Autonomous Agents (Agents-
2000), 17-22. Barcelona, Spain.

Barber, K. S., MacMahon, M. T., McKay, R. M., et al. 2001. An
Agent Infrastructure Implementation for Leveraging and
Collaboration in Operational and Experimental Environments.
In Proceedings of Second Workshop on Infrastructure for
Agents, MAS, and Scalable MAS at the Fifth International
Conference on Autonomous Agents (Agents-2001), 41-52.
Montreal, QC, Canada.

Chalupsky, H., Gil, Y., Knoblock, C. A., et al. 2001. Electric
Elves: Applying Agent Technology to Support Human
Organizations. In Proceedings of Innovative Applications of
Artificial Intelligence, 51-58. Seattle, WA.

Elsaesser, C. and Sanborn, J. 1990. An Architecture for
Adversarial Planning. IEEE Transactions on Systems, Man,
and Cybernetics 20(1): 186-194.

Martin, C. E., Schreckenghost, D., Bonasso, R. P., Kortenkamp,
D., Milam, T., and Thronesbery, C. 2003. An Environment for
Distributed Collaboration Among Humans and Software
Agents. In Proceedings of 2nd International Conference on
Autonomous Agents and Multi-Agent Systems, 1062-1063.
Melbourne, Australia.

McKay, R. M. 1999. Communication Services for Sensible
Agents. Master's Thesis, Electrical and Computer Engineering,
University of Texas at Austin.

Scerri, P., Pynadath, D. V., and Tambe, M. 2001. Adjustable
Autonomy in Real-World Multi-Agent Environments. In
Proceedings of Autonomous Agents, 300-307. Montreal,
Canada: ACM Press.

Schreckenghost, D., Martin, C. E., Bonasso, R. P., Hudson, M.
B., Milam, T., and Thronesbery, C. 2004. Distributed
Operations among Human-Agent Teams for Testing Crew
Water Recovery Systems. In Proceedings of AAAI Workshop
on Fielding Applications of Artificial Intelligence. San Jose,
CA.

Schreckenghost, D., Thronesbery, C., Bonasso, R. P.,
Kortenkamp, D., and Martin, C. E. 2002. Intelligent Control of
Life Support for Space Missions. IEEE Intelligent Systems 17
(5): 24-31.

Sycara, K., Paolucci, M., van Velsen, M., and Giampapa, J. 2002.
The RETSINA MAS Infrastructure. Autonomous Agents and
Multi-Agent Systems.

